Acknowledgements

Dr. Robyn M. Busch, PhD, ABPP

Disclosures

None

Overview

• Components of a neuropsychological assessment
• Factors that affect cognition in epilepsy
• Patterns of cognitive performance in various epilepsies
• Cognitive change after epilepsy surgery
• Methods for assessing language and memory dominance
• Risk factors for cognitive decline following epilepsy surgery
Neuropsychological Assessment

- Systematically measure various aspects of behavior
- Standardized assessment techniques
- Normative data
- Adjustment for age, education, sex
- Reliability / Validity
- Generalizability

Primary Cognitive Domains

- Intelligence (Current and Premorbid)
- Speech / Language
- Visuospatial Abilities
- Processing Speed
- Attention / Working Memory
- Executive Functioning
- Learning / Memory
- Academic Skills
- Motor Functioning
- Emotional Functioning

Factors that Influence Cognition in Epilepsy

- Seizure etiology and type
- Seizure frequency, duration, and severity
- Cerebral lesions
- Age at seizure onset
- Ictal and interictal physiological dysfunction
- Structural damage due to repetitive or prolonged seizures
- Hereditary factors
- Psychosocial conditions
- Psychiatric comorbidities
- Antiepileptic drug effects
Patterns of Cognitive Performance in Epilepsy

• Cognitive / behavior problems exist even prior to diagnosis and treatment

• Children with new onset epilepsy
 – Mild diffuse cognitive impairment, regardless of syndrome
 – Academic underachievement that predates first seizure
 – Greater behavior difficulties

• Adults with new onset epilepsy
 – Cognitive deficits compared to normal controls across a number of cognitive domains (attention, concentration, motor function, executive functioning, memory, and learning)

• Cognitive impairment in epilepsy not solely due effects of seizures and medications

Hermann (2006); Austin (2002); Taylor (2010); W.B. (2012)

Patterns of Cognitive Performance in Epilepsy

• Temporal Lobe Epilepsy
 – Material-specific memory (encoding) deficits
 – Particularly if dominant side
 – Impaired recall AND recognition
 – Reduced confrontation naming
 – Word-retrieval problems
 – Other cognitive issues in subset
 – Attention difficulties
 – Executive dysfunction

For review and specific references, see Busch (2011) and Elger (2004)

Patterns of Cognitive Performance in Epilepsy

• Frontal Lobe Epilepsy
 – Reduced performance on range of “frontal” tasks
 – Attention / working memory / Executive dysfunction
 – Slowed psychomotor speed
 – Reduced motor coordination and sequencing
 – Other cognitive issues in subset
 – Memory (retrieval) problems
 – Impaired recall, INTACT recognition
 – Effects on social cognition
 – Faux pas, Humor
 – Facial affect recognition

For review and specific references, see Busch (2011) and Elger (2004)
Patterns of Cognitive Performance in Epilepsy

• Parietal Lobe Epilepsy
 – Variable depending on seizure side and location
 – Most common deficits
 – Agnosia / Apraxia
 – Visuospatial difficulties
 – Left-right confusion
 – Hemineglect
 – Other (Linguistic, Problem solving)

• Occipital Lobe Epilepsy
 – Very limited research

Subjective Memory Ability

• Poor correlation between subjective and objective memory abilities
• Subjective memory complaints are often more related to depression than to actual memory ability
• Self-reported cognitive declines are uncommon after epilepsy surgery (9%) and self-reported gains were more frequent (18%) in the domains where objective cognitive declines occurred

Cognitive Change After Epilepsy Surgery

• Temporal lobectomy most comprehensively studied
 – Left ATL
 – 44% verbal memory decline; 7% improve
 – 34% naming decline; 4% improve
 – 27% verbal fluency improvement; 10% decline
 – Right ATL
 – 20% show visual memory decline
 – Few declines in IQ, executive functioning, or attention
• Variation in surgical technique had no large effect on cognitive outcome, except naming
• Too little data on extratemporal surgeries or surgeries in children
Postsurgical Memory Performance

![Graph showing memory performance](image)

- **Verbal Immediate**
- **Verbal Delayed**
- **Visual Immediate**
- **Visual Delayed**

Doss et al. (2004)

Language Dominance & Handedness

<table>
<thead>
<tr>
<th></th>
<th>Left Dominant</th>
<th>Bilateral Symmetric</th>
<th>Right Dominant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-Handed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>94%</td>
<td>0%</td>
<td>6%</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>78%</td>
<td>16%</td>
<td>6%</td>
</tr>
<tr>
<td>Left-Handed / Ambdx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>78%</td>
<td>14%</td>
<td>8%</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>46%</td>
<td>9%</td>
<td>45%</td>
</tr>
</tbody>
</table>

Neuropsychology – Lateralization and Risk

- **Laterality**
 - Is cognitive pattern consistent with suspected side and site of seizure onset?
 - Anything to suggest atypical dominance?
- **Cognitive risk**
 - Most research in temporal lobe epilepsy
 - Those with highest presurgical scores (memory, naming) at greatest risk for postsurgical decline
 - Those with lowest verbal-nonverbal discrepancy scores are at greatest risk for postsurgical memory decline

Chelune (1991)
Neuropsychology – Advantages / Limitations

• Advantages
 – Uses standardized tests that are validated/reliable
 – Noninvasive and easily repeatable
 – Methods to control for practice effects
 – Not subject to time constraints
 – Useful in identifying lateralized dysfunction
 – Identifies risk for postoperative cognitive decline
 – Provides baseline to evaluate postoperative change

• Limitations
 – Relationship between nondominant temporal function and performance on visual memory measures is variable
 – Poor localization abilities for specific memory functions
 – Unable to identify essential areas

Wada Test – Lateralization and Risk

• Lateralization
 – Temporary “inactivation” of ipsilateral cerebral hemisphere to allow independent testing of contralateral hemisphere
 – Initially used for speech lateralization
 – First applied to memory function in epilepsy by Milner

• Cognitive risk
 – Memory decline associated with
 – poor memory after ipsilateral injection (limited reserve)
 – good memory after contralateral injection (intact adequacy)

Wada & Rasmussen (1968); Milner (1962)

Wada Test – Advantages / Limitations

• Advantages
 – Temporary inactivation technique
 – Simulates effects of actual surgical ablation
 – Is predictive of postoperative cognitive outcome

• Limitations
 – Invasive
 – No uniform testing procedure across centers
 – Clinical effects (confusion, agitation, somnolence)
 – Not readily repeatable
 – Aphasia following dominant injection
 – Insufficient time for detailed testing
 – Limited in distinguishing material-specific deficits
 – Vascular structure - Crossflow issues, spatial resolution?
fMRI – Lateralization and Risk

• Lateralization
 – Activation technique to assess brain activity during cognitive processes
 – Evidence for utility in language and memory lateralization
 – High concordance with Wada results
 – Requires control or baseline task to differentiate functions

• Cognitive risk
 – Both language dominance and mesial temporal activation during word encoding are predictive of memory outcome
 – fMRI language laterality index has incremental validity in predicting memory outcome after left ATL
 – **Contralateral** MTL activation during memory = postsurgical naming and memory declines

For review and specific references, see Binder (2011)

fMRI - Advantages and Limitations

• Advantages
 – Noninvasive and easily repeatable
 – Good spatial and temporal resolution
 – Permits study of multiple brain functions
 – No strict time limitations
 – Can be used sequentially
 – Can identify mesial temporal activations during memory encoding

• Limitations
 – Disruption of neurovascular coupling
 – Relatively gross temporal resolution
 – Artifact (Head motion, susceptibility)
 – Difficult to identify essential areas
 – Thinking/problem-solving during rest state?
 – Surgical planning issues

Risk Factors for Memory Decline

• Dominant temporal surgery
• Average or better presurgical memory
• No MRI evidence for MTS/cell Loss/atrophy
• Small verbal-visual memory discrepancy
• Good memory after contralateral Wada injection
• Late age at seizure onset
• Short epilepsy duration
• Relatively low seizure frequency
• Partial seizures with no hx of GTC or status epilepticus
• Older age at time of surgery
• Male
• Comorbid depression
Summary

- Neuropsychological evaluation involves assessment of wide range of cognitive abilities
- Patterns of performance can provide clues re: language dominance and seizure lateralization/localization
- Important to predict cognitive outcome and to objectively measure cognitive change following surgery
- Wada and fMRI are other methods useful in establishing dominance and predicting cognitive outcome
- Host of factors, including demographic and epilepsy variables, are related to cognitive outcome
Intellectual Functioning

- **Wechsler Scales**
 - Wechsler Preschool and Primary Scale of Intelligence (WPPSI)
 - Wechsler Intelligence Scale for Children (WISC)
 - Wechsler Adult Intelligence Scale (WAIS)

- **Scores Produced**
 - Full Scale IQ
 - Verbal Comprehension
 - Perceptual Organization / Perceptual Reasoning
 - Working Memory
 - Processing Speed
 - Subtest scaled scores

Normal Score Distribution

Wechsler Nomenclature

<table>
<thead>
<tr>
<th>Standard Score</th>
<th>Scaled Score</th>
<th>Interpretive Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥130</td>
<td>≥ 16</td>
<td>Very Superior</td>
</tr>
<tr>
<td>120-129</td>
<td>14-15</td>
<td>Superior</td>
</tr>
<tr>
<td>110-119</td>
<td>12-13</td>
<td>High Average</td>
</tr>
<tr>
<td>90-109</td>
<td>8-11</td>
<td>Average</td>
</tr>
<tr>
<td>80-89</td>
<td>6-7</td>
<td>Low Average</td>
</tr>
<tr>
<td>70-79</td>
<td>4-5</td>
<td>Borderline</td>
</tr>
<tr>
<td>≤69</td>
<td>1-3</td>
<td>Extremely Low</td>
</tr>
</tbody>
</table>
Language

- **Naming**
 - Boston Naming Test
 - Visual Naming Test
 - Auditory Description Naming

- **Fluency**
 - Phonemic (letter)
 - Semantic (category)

- **Repetition**

- **Verbal Comprehension**
 - Token Test

Visuospatial Skills

- **Perception**
 - Judgment of Line Orientation
 - Line Bisection

- **Construction**
 - Block Design
 - Rey-Osterrieth Complex Figure

Processing Speed

- **Visuomotor Processing Speed**
 - Trail Making Test – Part A
 - Symbol Search

 - Digit Symbol / Coding
 - Symbol Digit Modalities Test
Attention Measures

- Attentional Capacity / Attention Span
 - Digit Span - Forward (5-9-7-3-4-6 → 5-9-7-3-4-6)
 - Spatial Span / Corsi Block-tapping

- Working Memory / Mental Tracking
 - Digit Span – Backward (5-9-7-3-4-6 → 6-4-3-7-9-5)
 - Spatial Span – Backward
 - Letter-Number Sequencing (6-F-2-B-5-Q → 2-5-6-B-F-Q)
 - Arithmetic

Executive Function Measures

- Concentration / Sustained or Focused Attention
 - Continuous Performance Test
 - Stroop Tests
 - Organization
 - Problem Solving
 - Most tests index Dorsolateral/superior medial prefrontal function

Memory

- Verbal Memory
 - Stories / Prose Passage / Logical Memory
 - Word Pairs
 - Word List Learning (California Verbal Learning Test)

- Visual Memory
 - Design Recall / Visual Reproduction / Brief Visual Memory Test
 - Face Recognition
 - Scenes / Family Pictures

- Immediate Memory
- Delayed Memory
- Recognition Memory
Academic Achievement

- Woodcock Johnson Tests of Achievement
 - Reading
 - Written Language
 - Mathematics
 - Listening Comprehension
- Wide Range Achievement Test
 - Reading
 - Spelling
 - Math Computation

Motor Skills

- Grip Strength
 - Dynamometer
- Motor Speed
 - Finger Tapping
- Manual Dexterity
 - Grooved Pegboard
 - Purdue Pegboard
- Lateralization of Motor Skills

Emotional Functioning

- Self Report Questionnaires
 - Anxiety
 - Beck Anxiety Inventory
 - State-Trait Anxiety Inventory
 - Depression
 - Beck Depression Inventory
 - Center for Epidemiological Studies Depression Inventory
 - Neurological Disorders Depression Inventory for Epilepsy
- Personality Style
 - Minnesota Multiphasic Personality Inventory
 - Personality Assessment Inventory
- Family Report
More on the MMPI

- Validity scales
 - L - Lie
 - F - Infrequency
 - K - Defensiveness
- Clinical scales
 - Hypochondriasis (Hs)
 - Depression (D)
 - Hysteria (Hy)
 - Psychopathic deviate (Pd)
 - Masculinity/Femininity (Mf)
- Content and Supplemental Scales
 - Conversion “V” (high Hs, low D, high Hy)

Evaluating Cognitive Change Over Time

- Compare differences in mean test scores from baseline to retest among patient groups and controls
- Examine individual change using difference scores
- Factors that can affect Time 2 performance independent of any intervention:
 - normal test score variability and measurement error
 - practice effects
 - regression toward the mean
 - demographic variables (e.g., age, education)
 - seizure variables (e.g., age at onset, duration of epilepsy)
- To accurately assess “true” cognitive change, extraneous factors must be controlled
 - Reliable Change Indices and Standardized Regression Based Change Scores.

Evaluating Cognitive Change Over Time

- Reliable Change Indices
 - Identify distribution of test-retest change scores in absence of any real underlying change
 - Establish confidence intervals
 - Test-retest scores outside of CI reflect degree of change is rare and unlikely due to chance score fluctuations
- Standardized Regression-Based Change Scores
 - Account for test-retest reliability and practice
 - Control for bias of demographic and epilepsy factors
 - More accurate prediction of retest performance using these variables as predictors into linear regression
 - Consideration of individual patient’s preoperative test performance to control for regression to the mean
RCIs vs. SRBs

- Predictive accuracy similar for both measures
- RCIs are simpler to use in clinical practice because they only require calculation of basic test-retest differences, which are directly compared to established cut-off scores
- Some epilepsy researchers prefer the SRB approach
 - Takes presurgical test performance into account
 - Does not assume equal practice effects for each individual
 - Provides a common metric allowing direct comparison of change across many cognitive measures in a battery

Indications for Cognitive Assessment

- Document cognitive abilities (strengths/weaknesses)
 - Cognitive complaint or change
 - School / work performance
 - Disability
 - Competency
- Impact of seizures on cognitive functioning
 - Lateralization / localized deficits
 - Indications re: language dominance
- Establish a baseline to assess change following intervention
 - Medication change
 - Epilepsy surgery

Cognitive Effects of Antiepileptic Drugs

- Dependent on host of factors
 - Type of drug — Serum level — Duration of treatment
 - Dosage — Drug interactions — Individual characteristics
- In general...
 - Older AEDs
 - PB and PRM: poorest cognitive profiles
 - CBZ: motor speed and attention difficulties
 - PHT: usually restricted to visually guided motor functions
 - Newer AEDs
 - TPM: greatest risk for cognitive impairment
 - ZNS: little data, but appears worse than other new agents
 - GBP, LTG, LEV: more positive cognitive profiles
 - Polytherapy not adequately addressed
 - Most studies based on adults (not children or elderly)

For summary and specific references, see Jokeit (2011) and Eddy (2011)
Psychological Functioning in Epilepsy

- Psychiatric disturbance in 20-40% of epilepsy patients
 - As high as 70% in refractory epilepsy
- Depression most common psychiatric disorder in intractable epilepsy – 20 to 55%
 - Also high rates of other psych disorders (e.g., anxiety, ADHD, ASD)
- High prevalence after surgical intervention, even when seizures well-controlled
- Severity of depression associated with greater cognitive impairment in patients with intractable seizures
- Relationship between poor mood state and impaired memory, especially in left TLE