Microscopic Diagnosis of Malaria

• **False positives:**
 – Microscopist with limited experience
 – Not familiar with thick smear technique
 – Artifacts on slide

• **False negatives:**
 – Low parasitemias
 – Misdiagnosis - Pf (+) but called Pv or mixed Pf / Pv
P. falciparum

- Ring form trophozoites are major stage
- Banana-shaped gametocyte definitive, but rare
- Most infected RBC's are normal size
- Never see schizonts or mature trophozoites unless very high parasitemia
- Multiply infected RBCs, including >2/cell, common and pathognomonic
- Parasitemia may be high in very severe cases (all age RBCs infected)
- Accolé/appliqué forms are characteristic
Non Microscopic Diagnosis

Rapid Diagnostic Tests (RDT) are now standard

- **Binax NOW** most common and only assay US FDA approved
 - All assays are not created equal, many available OCONUS do not meet stricter US standards for sensitivity and specificity

- **Detects** *P. falciparum* & *P. vivax* (or general *Plasmodium* spp)
 - Immunochromatographic membrane
 - Monoclonal Pf HRPII antibodies
 - Monoclonal pan-malaria aldolase
Rapid Diagnostic Tests
aka RDTs or Hand Held Assays

Pros:
• Doesn't require lab or pathologist skilled with making or reading blood smears
• Allows for faster diagnosis when microscopy not available

Cons:
• Results must be confirmed by microscopy
• Not widely available in hospital or clinic labs
• Limited information on species is given
• Does not determine percent parasitemia
• Unreliable in patient with recent history of malaria. May remain positive up to 1 month after treatment.
• Some strains of *P. falciparum* have lost the HRP2 antigen which is one of two antigens targeted by the Binax RDT, leading to false negatives

WHO Malaria RDT Performance 2012:
http://apps.who.int/iris/bitstream/10665/77748/1/9789241504720_eng.pdf
Fastidious Diagnostic Approach

Don’t fall into the “negative smear” trap

- Thick and thin Giemsa-stained blood films
 - Diagnosis - thick blood films are sensitive
 - Species identification - thin films increase ability to determine species

- Calling a smear “negative”
 - Must examine at least 200 oil immersion thick fields
 - Threshold of 10 parasites per µl (approx 0.0002%)

- Repeat every 8-12 hrs for 24-48 hrs
 - *P. falciparum* infected red cells may remain sequestered in microcirculation of deep organs for first 18 - 24 hrs of erythrocytic stage cycle
Fastidious Diagnostic Approach

Parasite Count

Important for clinical classification (severity)

• Quantitative
 • Count = # parasites per 200 WBC
 • # parasites per µl = count per WBC count per µl
 – Standard 8000 WBC/µl
 • % Parasitemia = # parasites per µl/RBC per µl x 100%
 – Standard 5.4 million RBC per µl for males
 – Standard 4.8 million RBC per µl for females

• Semi-quantitative
 • + 1-10 parasites per 100 thick film oil immersion fields
 • ++ 11-100 parasites per 100 fields
 • +++ 1-10 parasites per 1 thick film field
 • ++++ >10 parasites per 1 thick film field
Parasitological Classification
Role in Determining Therapy and Setting

• Species
 – *P. falciparum* clearly the highest priority, most cases in Africa
 – *P. vivax, P. ovale* - relapse prevention

• Geographic origin of the infection
 – Knowledge about drug sensitivity

• Blood smear results (regardless of clinical picture)
 – Density >5% = hyperparasitemia
 – Malaria pigment in >5% neutrophils = severe
 – Pf mature stages >0.2% = grave prognosis
 • Presumed mixed infection blunder
Case Categorization
New, treatment failure, relapse ???

• New infection vs treatment failure

• Relapse
 – Reappearance of asexual parasitemia after elimination
 – Delayed maturation of hypnozoites in the liver
 • *P. vivax* - months - 5 yrs (usually less than 1 year)
 • *P. ovale* - months - 5 yrs (usually less than 1 year)

• Recrudescence
 – Reappearance of detectable asexual parasitemia due to persistence of asexual erythrocytic stage at undetectable level
 • *P. falciparum* - days - 2 yrs
 • *P. malariae* - days - 50 yrs
Clinical Classification

Patients demonstrating any of the following are defined as severe/complicated malaria

- Obtundation, unarousable, coma
- Confusion, psychosis, delirium
- Decerebrate or Decorticate posturing
- Opisthotonos
- Focal neurologic deficits
- Recurring generalized seizures (≥ 3/24 hrs)
- Persistent focal seizures
- Prolonged hyper/hypothermia
- Hi output vomiting or diarrhea
- Pregnancy (especially primigravida)

- Parasitemia ≥5% (percent RBCs infected)
- Severe anemia (Hgb < 7 g/dL or rapid \(\downarrow\))
- Hypoglycemia (Glu < 60 mg/dL)
- Renal failure (Cr > 3 mg/dL)
- Hepatic dysfunction (ALT or Alk P > 3x nl)
- Acidosis (serum bicarb < 15mmol/dL or venous lactate > 45 mg/dL)
- Pulmonary edema
- Algid malaria (shock)
- Spontaneous bleeding (DIC or \(\downarrow\) plt)
- Massive intravascular hemolysis (hemoglobinuria and TB > 2.5 mg/dL)
- Splenic rupture
Severe Malaria

Poor Prognostic Signs

Clinical
- Impaired consciousness
- Repeated convulsions (>3 in 24 h)
- Respiratory distress
 - (rapid, deep, labored breathing or ARDS)
- Substantial bleeding
- Shock

Biochemical
- Renal impairment (Cr > 3 mg/dl)
- Acidosis (plasma bicarbonate, < 15 mmol/L)
- Jaundice (serum total bilirubin, >2.5 mg/dl)
- Hyperlactatemia (venous lactate, >5 mmol/L)
- Hypoglycemia (blood glucose, <40 mg/dl)
- Elevated Aminotransferase levels (>3 times ULN)

Hematological features
- Parasitemia >500,000 parasites/mm³, or >10,000 mature trophozoites and schizont/mm³
- >5% neutrophils contain malaria pigment
Cerebral malaria

Dangerous development in falciparum malaria

• More common in children 3-5 yo but can occur at any age
 – Knobs resulting in cytoadherence and microvascular sequestration
 – Microvascular obstruction of capillaries and venules
 – Seizures or coma

• 15-30% morality
 – 10-20% permanent neurological damage
Cerebral Malaria

• Unarousable coma in patient with asexual stage parasitemia and no other cause

• Potential confounders (CNS effects)
 – Fever
 – Hypoglycemia

• 90% deaths preceded by coma

• 20% mortality in tertiary setting
Cerebral Malaria

• Immobile
• Flailing
• Posturing (decerebrate/decorticate/opisthotonos)
• Recurrent generalized or persistent focal seizures
• Ocular findings
 – Ophthalmoplegia
 – Nystagmus
 – CN VI palsy
 – Corneal, pupillary, oculocephalic, oculovestibular reflexes abnormal (children)
• Upper motor neuron findings > LMN
Poor Prognostic Signs

• Deep coma
• Repeated seizures (> 3 in 24 hours)
• Respiratory distress
• Heavy bleeding
• Shock
• Mature asexual stage Pf parasites
Seizures

• **Must determine etiology**
 - Hypoglycemia (monitor BGs, D5NS + D50)
 - Febrile seizures (antipyretics, PR Tylenol)
 - Cerebral malaria (recurrent and prolonged)

• **Fluid management critical for children (↑ ICP)**
 - Elevate head of bed
 - Osmotic diuretics (mannitol), hyperventilation, corticosteroids without proven efficacy

• **Anticonvulsants**
 - Generally not necessary if etiology hypoglycemia or fever and controlled
 - IV or PR benzodiazepines
 - Prophylactic phenobarb not recommended
Other Complications

• Pulmonary edema
 – Portends grave outcome
 – Associated with hyperparasitemia
 – Normal PCWP with microcapillary leak
 – Treat as ARDS

• Aspiration pneumonia

• Hypotension/shock (IVF, RBCs, vasopressors)
 – Postural hypotension common
 – If pronounced, suspect
 • Gram-negative sepsis (aspiration and urinary tract)
 • Pulmonary edema
 • Metabolic acidosis (hydrate, correct electrolyte abnormalities)
 • GI hemorrhage
 • Splenic rupture
Other Complications

• Severe anemia
 – HCT < 15-20 and >10,000 parasites/µl
 – Hemolysis and BM suppression
 – Indications for transfusion
 • HCT <20% (variable depending on patient)
 • Rapidly falling HCT
 – PRBCs only (plasma → fluid overload)

• Obstructive jaundice (direct hyperbilirubinemia)
 – Poor prognostic sign

• DIC
 – Treat infection
 – Heparin not recommended
Oliguric Renal Failure

• Determine etiology
 – Hypovolemia (fluid and BP management)
 • Dx based on Is & Os, BUN/Cre ratio >20, PCWP
 • Consider fluid challenge 200ml over 5-20 minutes
 – If hemodynamics improve with little change in PCWP, continue fluid bolus
 – If marked increase in HR and increase in PCWP >5 and little improvement in hemodynamics, risk pulmonary edema with little impact on renal perfusion (consider cardiac inotropes dopamine 2-5 µg/kg/min)
 – ↓ renal capillary blood flow due to hyperparasitemia
 – Hemaglobinuria due to intravascular hemolysis

• If ATN develops with ARF (Cr > 5)
 – Hemodialysis (may last up to 6 weeks)
 – Frequently associated with DIC and ARDS
Hypoglycemia

• Measure on admission
 – Coma associated with serum glucose < 40mg/dL
 – Dextrose can reverse coma prior to initiation of antimalarials

• Exacerbated with quinine/quinidine

• Increased risk with pregnancy & hyperparasitemia

• Monitor glucose q 2-4 hrs

• Treatment
 – 1 AMP D50 + 10% dextrose over 4 hrs, then D5 if BG > 60
 – Glucagon (SQ, IM, IV)
 • > 20kg - 1mg
 • < 20kg - 30µg/kg
Treatment Goals

• Rapidly reduce asexual parasite burden with blood schizonticide
• Minimize complications and adverse events
• Achieve clinical and radical cure
 – Avoid agents with known resistance in region
 – Prevent recrudescence (Pf and Pm) - second agent
 – Prevent relapse (Pv and Po) - primaquine

Uncomplicated falciparum malaria
Oral treatment options are best

– Artemether-lumefantrine (*Coartem*)
 • 80mg Artemether /480mg Lumefantrine
 • 4 tabs, repeat 8 hours later, then 4 tabs po BID for 2 days = 6 doses

– Artesunate-amodiaquine (*Coarsucam or ASAQ*)
 • 100mg artesunate/270mg amodiaquine
 • 3 tabs qd for 3 days = 3 doses

– Atovaquone-proguanil (*Malarone*)
 • 1000 mg Atovaquone/400 mg proguanil
 • 4 tabs qd x 3 days = 3 doses

– Quinine sulfate and doxycycline
 • Quinine 650 mg q 8 hr x 3-7 days + Doxycycline 100 mg bid x 7 days

– Mefloquine
 • 1250 mg single dose (5 tablets)
 • or 750 mg initial and 500 mg 12 h later to minimize side-effects
Artemether/Lumefantrine

Coartem tablets (20/120mg)

- Rapid reduction in parasite density
- Food improves absorption
- Dose 4 tabs po q 8h x 2 then bid, total 6 doses
 - Pediatric dosing 1 tab for 5-15kg, +1 each 10kg
 - Pregnancy category C

- Side effects
 - HA, anorexia, dizziness, asthenia, myalgias, arthralgias (>30%)

- Contraindications
 - Known QT prolongation
 - Concomitant use with drugs that prolong QT
 - Hypokalemia or hypomagnesemia
 - Concomitant CYP3A4 inhibitors (grapefruit)
Artesunate-amodiaquine
Coarsucam or ASAQ tablets (100/270 mg)

- Rapid reduction in parasitemia
- Easiest regiment of the ACTs for pediatrics
- Infants and children: 1 tab qd for 3 days, can be dissolved in water
- Adolescents and adults: 2 tabs qd for 3 days
- Side effects:
 - Hepatotoxicity
 - Agranulocytosis
 - Avoid with efavirenz in HIV as increased liver toxicity
Atovaquone/Proguanil

Malarone

- 1 tablet = 250mg atovaquone/100mg proguanil or 62.5mg/25mg
- Ingestion with food or milk improves absorption.
- Repeat dose if vomiting occurs within 1 hour
- Dose (adults)
 - 4 tablets po qd x 3 days
- Dose (children)
 - 5-8kg: 125/50mg po qd x 3 days
 - 9-10kg: 187.5/75mg po qd x 3 days
 - 11-20kg: 250/100 mg po qd x 3 days
 - 21-30kg: 500/200 mg po qd x 3 days
 - 31-40kg: 750/300 mg po qd x 3 days
 - >40kg: adult dose
- Extremely well tolerated (mild GI upset and CNS effects)
Quinine Sulfate
Oral Dosing for uncomplicated malaria

• 648 mg (10mg/kg) po TID x 7-10 days
 – Rarely used alone because of high recrudescence
 – Cinchonism poorly tolerated over time
 • Tinnitus, high-tone deafness, n/v, dysphoria

• Quinine x 3-4 days in combination with:
 – Tetracycline 250mg (5mg/kg) TID X 7D
 • Contraindicated in pregnancy and in children under 8
 – Doxycycline 100mg (2mg/kg) BID X 7D
 • Contraindicated in pregnancy and in children under 8
 – Clindamycin 10mg/kg BID X 7D
Mefloquine

Lariam

- Easy dosing, lots of experience with it’s use
 - Adults: 1000-1250 mg po x 1
 - Peds: 20-25mg/kg po x 1
 - Dosing with food increases absorption
 - Repeat full dose if vomits within 30 min, 50% if 30-60 min

- Minor side-effects
 - GI disturbance
 - Insomnia
 - Dizziness
 - Vivid dreams
 - Headache

- Contraindications
 - Known hypersensitivity
 - Cardiac conduction abnormalities
 - Neuropsychiatric disorders
 - Seizure disorders
 - Affective disorders and psychoses

- Pregnancy (safe 2nd and 3rd trimester, probably 1st)
Severe Malaria
IV Therapy

• Artesunate:
 – 2.4 mg/kg loading dose over 5 minutes repeat 12 hours later and once daily for 3 days
 – PO when clinically stable: 4 mg/kg qd x3 days (with mefloquine or clindamycin)

• Artemether:
 – 3.2 mg/kg IM then 1.6 mg/kg daily x 3 days
 – PO when stable at 2.0 mg/kg/daily (with 2nd drug)

• Quinine hydrochloride:
 – Loading dose 20 mg/kg then 12 mg/kg q 8h for 7 days
 – PO when stable 650 mg q 8h to complete 7 days (with 2nd drug)

Rosenthal. *Artesunate for the Treatment of Severe Falciparum Malaria* NEJM 358;17
www.nejm.org 2008
Pre Referral Treatment

In Patients with Severe Malaria

• If complete treatment for severe malaria is not possible, patients should be given pre-referral treatment and referred immediately to an appropriate facility for further treatment.

• The following are options for pre-referral treatment:
 – rectal artesunate
 – quinine IM
 – artesunate IM
 – artemether IM

• In children <5 years of age, the use of rectal artesunate (10 mg/kg) reduces risk of death and permanent disability.
Parenteral Quinine

• Quinine dihydrochloride dose
 – IV: loading dose of 20 mg/kg salt over 4 hours, followed by 10 mg/kg over 2-8 hours every 8 hours until improved and able to convert to oral
 • Optimal plasma level: (10-15 mg/l)
 • Cardiac monitoring required with h/o CV disease
 – IM: 20mg/kg bolus then 10mg/kg split dosing q 8hrs or 10 mg/kg q 4 hours X 3 doses then q 8 hours until able to convert to oral
 – PR (children): 20mg/kg in 2ml H$_2$O, then 15mg/kg q 8 hrs as effective as IM or IV, similar Pk, simpler, fewer adverse events
Management of complicated cases

• **Control glucose**
 – Fatal hypoglycemia can occur especially in children

• **Carefully manage fluids** and watch for development of ARDS 24-48 hours AFTER parasitemia clears and patient appears to be improving

• **Monitor/manage**- acidosis, seizures, pulmonary edema and renal failure
Severe Malaria

ICU Care

• Nursing in lateral decubitus position
• Frequent suctioning for comatose patient
• Hydration
 – Avoid overhydration → pulmonary edema
 – Avoid underhydration → hypotension and renal insufficiency
 – Is and Os (hourly, urinary catheter)
 – CVP monitoring (maintain at 5cm H2O)
• Fingerstick blood glucose q 4hrs
 – Especially on quinidine/quinine
• Electrolyte balance (Na, K, Cl, Mg, CO2, BUN, Cr q 8 -12h)
• Maintain Temp <38.5°C (antipyretics, cooling blankets, etc.)
• Monitor for respiratory distress and potential causes
 – Pneumonia/pulmonary edema (CXR daily or clinical change)
 – Metabolic acidosis (ABG)
Exchange Blood Transfusion (ET)

- First introduced 1979
- Recent case series/case control studies
 - 30-60% parasitemia reduced to <1% within 24 hrs after ET with full recovery
 - 18% parasitemia reduced to <1% with full recovery
 - Similar death rates with ET (2/9) compared to no ET (3/12) but for parasitemia >30%, death rate much lower for ET (0/4) vs no ET (3/3)
 - 35-80% parasitemia reduced to <1% within 24 hrs after ET with recovery
- Meta-analysis
 - No difference in survival but only evaluated 8 studies and ET groups had much higher parasitemia than no ET groups

Riddle et al., CID, 2002
Exchange Transfusions
The jury is still out

• Consider exchange transfusion if:
 – Significant hyperparasitemia (typically > 15%)
 – No response to antimalarials in 24-48 hours with persistent elevated parasitemia

• Survival has been reported with parasitemia > 50% without exchange transfusion

• Availability and safety of PRBCs in Africa may limit this as an option
Assessment of Parasitological Response

• Parasitemia may increase during the 6-12 hours after initiation of therapy

• Parasitemia should be reduced by 75% within 48 hours. If not:
 – Inappropriate therapy
 – Inadequate drug absorption
 – High level drug resistance
Optimal treatment of malaria requires:

- Rapid case identification
- Rapid clinical and parasitological classification
- Initiation of therapy to rapidly reduce, and then eliminate parasitemia based on the clinical or parasitological classification
- Recognition and treatment of recrudescence and relapse
- Initiation of supportive and ancillary therapy based on clinical or parasitological classification
- Recognition of inadequate clinical or parasitological response to therapy and development of complications, and initiation of appropriate therapy
Treatment in Pregnancy

Scant data for most newer drugs

• First Trimester:
 – uncomplicated falciparum malaria should be treated with quinine plus clindamycin for seven days (and quinine monotherapy if clindamycin is not available).
 – Artesunate plus clindamycin for seven days is indicated if this treatment fails.
 – Mefloquine, atovaquone/proguanil, sulfa/pyrimethamine and ACTs can be used if other drugs are not available and have NOT demonstrated fetal harm.

• Second and Third Trimesters:
 – ACT or artesunate plus clindamycin to be given for 7 days or
 – quinine plus clindamycin to be given for 7 days
Malaria in Pregnancy

Special precautions

WHO recommendations for malaria in pregnant women:

- use of long-lasting insecticidal nets (LLINs)
- in areas of stable malaria transmission of sub-Saharan Africa, intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine
- prompt diagnosis and effective treatment of malaria infections.

In high-transmission settings:

- levels of acquired immunity tend to be high, infection usually asymptomatic
- parasites may be present in the placenta and contribute to maternal anaemia even in the absence of documented peripheral parasitemia.
- Both maternal anemia and placental parasitemia can lead to low birth weight.
- most pronounced for women in their first pregnancy

http://www.who.int/malaria/areas/high_risk_groups/pregnancy/en/
Malaria in Pregnancy
Low-transmission settings

• relatively little acquired immunity to malaria
• malaria in pregnancy is associated with:
 – Anemia
 – an increased risk of severe malaria
 – may lead to spontaneous abortion, stillbirth, prematurity and low birth weight.
• In such settings, malaria affects all pregnant women, regardless of the number of times they have been pregnant
Intermittent Preventive Treatment in pregnancy (IPTp) with Sulfadoxine-Pyrimethamine (SP)

• Recommended only in sub Saharan Africa

• In areas of stable (moderate-to-high) malaria transmission, IPTp with SP is recommended for all pregnant women at each scheduled antenatal care visit. In particular:
 – The first IPTp-SP dose as early as possible during the 2nd trimester
 – Each dose should be given at least 1 month apart and up to time of delivery
 – The last dose of IPTp can be safely administered late (after 36 weeks) in the 3rd trimester of gestation
 – IPTp should be administered as directly observed therapy (DOT)
 – SP can be given on an empty stomach
 – Folic acid at a daily dose ≥5 mg should not be given concomitantly with SP as this counteracts its efficacy as an antimalarial
 – SP is contraindicated in women receiving TMP/SMX prophylaxis for HIV

• HIV infected women are more likely to have problems with malaria during pregnancy and should be focused on

Malaria Prevention in Infants
Intermittent Preventive Therapy (IPTi)

- Passive maternal immunity against malaria wanes by 3 months

WHO recommendations for the prevention and control of malaria in infants:
- use of long-lasting insecticidal nets (LLINs);
- intermittent preventive therapy for infants (IPTi) in areas of moderate to high transmission in sub-Saharan Africa;
- prompt diagnosis and effective treatment of malaria infections.
- SP-IPTi reduces clinical malaria, anemia and severe malaria in infants in the first year of life
- Dose SP-IPTi at routine vaccination for 2nd and 3rd doses of DTP/Penta3 and measles vaccination at 8-10 weeks, 12-14 weeks, and ~9 months of age

WHO. 2011. *Intermittent preventive treatment for infants using sulfadoxine-pyrimethamine (SP-IPTi) for malaria control in Africa: implementation field guide*
Malaria Pitfalls in Africa

Items to Consider

• **Malaria masquerades as other diagnoses**
 – Dengue, chikungunya, African tick typhus overlap in many areas
 – Populations with high prevalence may not be having their current sx caused by their malaria infection
 – Patients from endemic areas who have had multiple bouts often know when they have malaria again

• **Trust but verify. Lab results may be spurious:**
 – Malaria smears are notoriously overcalled as positive due to poorly trained technicians, poor quality stains and inadequate microscopes
 – Rapid Diagnostic Tests increasingly available but many have inferior sensitivity and specificity. Some are complicated and may be prone to error.

• **Counterfeit antimalarials are a scourge and very common**
 – If a patient does not respond (or partially responds) to therapy consider poor quality drugs BEFORE you think resistance
Malaria Prevention

• Take advice from local physicians with a grain of salt

• Personal Protection Measures (PPMs) to prevent mosquito bites
 – Bed nets (factory impregnated with insecticide)
 – Repellents (25% DEET or Picaridin)
 – Permethrin impregnated clothing

• Chemoprophylaxis
Anti-malarial chemoprophylaxis

US FDA approved

- Chloroquine - weekly
 - *Aralen®*

- Mefloquine - weekly
 - *Lariam®*

- Doxycycline - daily

- Atovaquone/Proguanil - daily
 - *Malarone®*

- Primaquine - daily
 - Not FDA approved but CDC reco
Antimalarial Prophylaxis

<table>
<thead>
<tr>
<th></th>
<th>Chloroq</th>
<th>Mefloq</th>
<th>Doxy</th>
<th>Malarone</th>
<th>Primaq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dosing</td>
<td>qwk</td>
<td>qwk</td>
<td>qd</td>
<td>qd</td>
<td>qd</td>
</tr>
<tr>
<td>Start</td>
<td>1-2 wk</td>
<td>1-2wk</td>
<td>1-2d</td>
<td>1-2d</td>
<td>1-2d</td>
</tr>
<tr>
<td>End</td>
<td>4wk</td>
<td>4wk</td>
<td>4wk</td>
<td>3-7d</td>
<td>3-7d</td>
</tr>
<tr>
<td>D/C due to A/E</td>
<td>N/A</td>
<td>2-5%</td>
<td>N/A</td>
<td><1%</td>
<td>N/A</td>
</tr>
<tr>
<td>Cost 2wk (Jan11)</td>
<td>$8.05</td>
<td>$9.03</td>
<td>$2.20</td>
<td>$92.92</td>
<td>$29.90</td>
</tr>
<tr>
<td></td>
<td>($1.15)</td>
<td>($1.29)</td>
<td>($0.05)</td>
<td>($4.04)</td>
<td>($1.30- 2tabs)</td>
</tr>
<tr>
<td>6 months</td>
<td>$35.65</td>
<td>$39.99</td>
<td>$10.50</td>
<td>$763.56</td>
<td>$245.70</td>
</tr>
<tr>
<td>X150,000</td>
<td>$5.35m</td>
<td>$6.00m</td>
<td>$1.58m</td>
<td>$114.53m</td>
<td>$36.86m</td>
</tr>
</tbody>
</table>
Mefloquine

Lariam

- Once weekly dosing is the main advantage
 - Half life 3 weeks!

- CNS side effects are common but also over emphasized in lay press
 - 90% of patients have no or minimal side effects
 - Children have fewer side effects than adults

- Only drug FDA approved for use in pregnancy and breast feeding
 - Best data in 2nd and 3rd trimester but 1st appears safe as well

- Should not be used in those with seizure disorder or psychiatric illness (stable depression probably probably okay)

- Problems in those with baseline cardiac conduction defects especially QT prolongation or in combination with other QT drugs (macrolides and quinolones)

- If patients have unacceptable side effects then change to an alternative
Doxycycline

- May photosensitize some
- GI intolerance, especially reflux is common
 - take with food and not at bedtime
- Adherence is the major issue
 - a single missed dose can lead to malaria
 - 4 weeks post travel
- No resistance reported
- Broad spectrum activity:
 - rickettsia, lepto, bacteria mycoplasma, chlamydia
- Generics are inexpensive
- Not in pregnancy and peds <8 yo

Atovaquone/Proguanil

Malarone

- Well tolerated combination
- Very efficacious even with occasional missed doses
- Causal activity (i.e. kills hepatic schizonts)
 - 5-7 days post-travel
- No geographic considerations for resistance (yet)
- Optimal choice for short term (2-3 weeks) travel
- Prohibitively expensive
- Not approved in pregnancy but probably okay in 2nd and 3rd trimesters
Relapsing *P. vivax* malaria

Hypnozoites are different

- Use of chloroquine, mefloquine, doxycycline, or atovaquone-proguanil will not prevent relapsing *P. vivax* malaria.

- Only weight appropriate dose of primaquine will prevent *P. vivax* relapse.
 - Primary prophylaxis
 - Radical cure
 - Preventive Anti-Relapse Treatment (PART)

- Generally not used in Africa due to the prevalence of falciparum vs vivax and ovale.
Primaquine for Pv and Po
“Preventing Relapse”

• Tropical strains relapse more commonly/rapidly
 – Asia/Pacific - 72-100% within 2wks-5months
 – Korea - 32% in 4-6 months
 – India - 9-19% in 12 months
 – Overall worldwide 5%

• Dosing based on Korean War observations
 – Total dose of 200mg key to cure
 – 30mg base qd X 14d
 – 45mg base qwk X 8wks

• Check G6PD levels before administration
 – Normal (B+ or African A+) - standard dose
 – Mild deficiency (African A-) - dose 45mg (0.8mg/kg) q wk X 8wk
 – Severe deficiency (Mediterranean/Asian)- not rec
G6 PD Deficiency

• **Protects RBCs from oxidants**
 – 2 predominant types of deficiency in US population (total of over 200 variants found)
 – Severe deficiency is fully expressed in males and rare in females

• **G-6-PDA**
 – ~12% of African-American Males (~1% females)
 – 50% decline of baseline activity in 13 days (normally takes 60 days)
 – Young RBCs have normal enzyme activity

• **G-6-PDMED**
 – **Rare** - found in Greeks, Sardinians, Sephardic Jews, Arabs and other males of Mediterranean descent
 – 50% decline of baseline activity in 1-2 days
 – All RBCs have deficient enzyme activity
Malaria Summary

• Add malaria to the differential dx for almost any condition you are evaluating

• Since it is so common in MTU it is often overdiagnosed, so conversely, keep other dx in mind when you are told a patient has malaria

• Be careful to assess for evidence of severe malaria and be prepared to treat those complications

• Focus on pregnant women and children <5 yo

• Learn what your lab can actually do and how reliable the results are

• Be aware of the prevalence of counterfeit drugs
Thanks for your attention!

MartinGJ@state.gov
202 663-3091