Objectives

- Understand the basic physiology of calcium/phosphorus regulation
- Recognize causes of calcium and phosphorus derangements in infants and young children
- Describe the pathophysiology of various forms of rickets
Mineral Metabolism: A Short Course

Physiology Basics

• PTH effects
 – Bone resorption → Ca+phos release
 – Kidney
 • Tubule → Ca reabsorption, phos wasting
 • Increased Vitamin D hydroxylase activity
 – Increased calcitriol (1,25-OH Vitamin D)
 – Gut → dietary Ca absorption
 • PTH and calcitrol effect

Physiology Basics

• Summary effect:
 – Increased Ca, decreased Phos, increased calcitrol

• Triggers for PTH release
 – Hypocalcemia
 – Hyperphosphatemia
 – Calcitriol deficiency
Hypocalcemia: Etiology

- Early onset hypocalcemia
- Late onset hypocalcemia
- Hypoparathyroidism
 - The “Pseudo’s”
- Vitamin D deficiency

Hypocalcemia: Manifestations

- Infants often asymptomatic
- Neuromuscular irritability
 - myoclonic jerks
 - “twitching”
 - exaggerated startle responses
 - seizures
- Apnea, vomiting, laryngospasm

Tetany

Chvostek Sign aka. Elvis Sign

Trousseau Sign

Thank ya. Thank ya very much.
Early Onset Hypocalcemia
- 1-3 days of life
- Risk Factors
 - Prematurity (≤ 32 weeks)
 - Very low birth weight (< 1500 g)
 - Low calcium stores
 - Blunted PTH response
 - Decreased Vit D activation
 - Rapid bone growth
 - Maternal diabetes mellitus
 - Diminished PTH release

Early Onset Hypocalcemia
- Risk Factors
 - Perinatal asphyxia
 - Hyperphosphatemia from injured tissues
 - Maternal hyperparathyroidism
 - Infantile PTH suppressed
- Largely transient (1-2 weeks)

Late Onset Hypocalcemia
- ~1 week of life
- Hypomagnesemia
 - PTH resistance
- Increased phosphate load
 - Cows milk based formula
 - Rarely seen now
- Hypoparathyroidism
 - DiGeorge Syndrome
DiGeorge Syndrome

CATCH22
Cardiac, Abnormal facies, Thymic aplasia, Cleft palate, Hypocalcemia with 22q11 deletion

DiGeorge Syndrome Categories

<table>
<thead>
<tr>
<th>Phenotype category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Pharyngeal</td>
<td>Cardiovascular abnormalities</td>
</tr>
<tr>
<td></td>
<td>Craniofacial anomalies, velopharyngeal incompetence</td>
</tr>
<tr>
<td></td>
<td>Ear defects, hearing impairment</td>
</tr>
<tr>
<td></td>
<td>Thymic hypoplasia or aplasia</td>
</tr>
<tr>
<td>(2) Neurobehavioral</td>
<td>Learning disabilities</td>
</tr>
<tr>
<td></td>
<td>Psychiatric disorders</td>
</tr>
<tr>
<td>(3) Others</td>
<td>Skeletal (craniofacial) anomalies</td>
</tr>
<tr>
<td></td>
<td>Vascular (other than aortic arch) anomalies</td>
</tr>
<tr>
<td></td>
<td>Kidney anomalies</td>
</tr>
</tbody>
</table>

Etiology of DiGeorge Syndrome

- Intrauterine toxicity
 - Maternal diabetes mellitus
 - Alcohol
 - Retinoic acid

- Genetic Defects
 - 22q11.2 - most common microdeletion
 - 22q11 FISH analysis positive in 85% of cases
DiGeorge Syndrome

- Consider in any newborn with hypoparathyroidism
 - T cell immunity analysis
 - Cardiac evaluation
- Additional endocrine features
 - Hypothyroidism
 - Growth hormone deficiency

Hypoparathyroidism: Other causes

- Surgical removal or damage of parathyroid glands
- Infiltration of parathyroid glands by iron, copper, or tumor
- Hypomagnesemia impairs PTH secretion and action
- Genetic defects

Genetic Hypoparathyroidism

- Isolated Endocrinopathy
 - Activating mutations of CaSR gene
 - PTH gene defects
 - Defective embryogenesis due to GCMB defects
- Complex syndrome
 - DiGeorge syndrome
 - Autoimmune polyglandular syndrome 1
 - Hypoparathyroidism-deafness-renal dysplasia (HDR syndrome)
Autoimmune Hypoparathyroidism

• Isolated hypoparathyroidism
• Autoimmune polyglandular Syndrome (APS type 1) (2q22.3)
 AIRE gene mutations
 – Hypoparathyroidism 93%
 – Mucocutaneous candidiasis 83%
 – Adrenal insufficiency 73%
 – Ectodermal dystrophy 75%
 – Additional components 2-40%

Timing of Major Features in APS type 1

Betterle, Greggio, and Volpato (1998) J Clin Endocrinol Metab 83:1049

Pseudohypoparathyroidism

• End-organ resistance to PTH
 – Kidney and Bone
 – Hypocalcemia, hyperphosphatemia, elevated PTH
• Effect of genetic imprinting
 – Maternally transmitted mutation (GNAS1)
Pseudohypoparathyroidism

- Albright’s hereditary osteodystrophy (AHO)
 - Round facies
 - Short stature
 - Short digits
 - Obesity
 - Developmental delay

Pseudo-pseudohypoparathyroidism

- Paternally transmitted GNAS1 mutation
 - Physical findings of AHO
 - Normal tissue response to PTH
 - Normal Ca, phosphate, PTH levels

Hypercalcemia: Etiology

- Familial hypocalciuric hypercalcemia
- Primary hyperparathyroidism
- Williams syndrome
- Hypercalcemia of malignancy
- Granulomatous disease
- Hypervitaminosis D or A
Benign Familial Hypercalcemia (Familial Hypocalciuric Hypercalcemia)

- Autosomal dominant disorder
- Can be associated with Severe Neonatal Hyperparathyroidism
- Very low urinary calcium excretion
- Inappropriate PTH secretion despite hypercalcemia.
- Typically benign natural history
- Caused by an inactivating defects in the gene encoding the calcium-sensing receptor in most patients.

Primary hyperparathyroidism

- Uncontrolled bone demineralization
- Increased enteral and renal Ca absorption
- Typically idiopathic in children
 - May be tumor-related
 - Possible defect in calcium sensing receptor

Williams syndrome

- Prevalence of 1/20,000
- Diagnosis by FISH - 7q11
- Developmental problems (IQ 50-70)
- “Cocktail party personality”
- Supravavular aortic stenosis
- “Elfin” face and dental abnormalities
Williams syndrome

• Early onset hypercalcemia
 – Etiology unclear
 • Normal PTH, Vit D levels
 – Typically transient, self-limited

Hypercalcemia of Malignancy

• Complicates 10-20% of cancer
• Acute, symptomatic and severe
• Malignancy usually obvious
• Causes
 – PTHrP (parathyroid related protein)
 – Calcitriol (ectopic conversion)
 • Also seen in granulomatous disease
 – Direct bone invasion

Vitamin D and Vitamin A Intoxication

• More than 10,000 IU of vitamin D per day
 – Elevated levels of 25(OH)D (>160 ng/dl)
 – Normal levels of 1,25(OH)2D
• More than 25,000 IU of vitamin A per day
 – Carnivore liver!
 – Increases bone resorption
• Carotenemia
 – Yellow-orange skin color, sclerae remain white!
 – Not toxic
Rickets

• Bone mineralization defects of the growth plates
 – Impaired vascular extension
 – Calcium or phosphorus deficits

Rickets: Clinical manifestations

• Bone and cartilage deformities
• Age-dependent skeletal defects
 – Infant: forearms, distal tibia
 – Toddler: genu varum
 – Older child: genu valgum
• Rachitic rosary
• Delayed fontanelle closure
• Bone pain

Rickets: Clinical manifestations

• Extraskeletal
 – Enamel hypoplasia
 – Decreased muscle tone
 – Seizures (hypocalcemia)
 – Infection risks
Rickets: Pathophysiology

- Hypocalcemia
 - Nutritional deficiency
 - Vitamin D
 - Calcium
 - Vit D dependent
 - Vit D receptor mutation
 - Renal osteodystrophy
- Hypophosphatemia
 - X-linked
 - With hypercalciuria

Vitamin D deficiency

- Decreased dietary intake/production
 - Breast-fed, low sun exposure
- Decreased hepatic hydroxylation
 - Liver disease
 - P450 activation increased hydroxylation and catabolism
- Decreased renal hydroxylation
 - Chronic kidney disease

Does Breast Feeding Cause Rickets? Comparison of Nutrient Values

<table>
<thead>
<tr>
<th></th>
<th>Breast milk</th>
<th>Cow’s milk</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium mg/L</td>
<td>344</td>
<td>1370</td>
<td>533</td>
</tr>
<tr>
<td>Phosphorous mg/L</td>
<td>144</td>
<td>910</td>
<td>399</td>
</tr>
<tr>
<td>Vitamin D IU/L</td>
<td>12-60</td>
<td>5-40 (400 IU/qt)</td>
<td>400</td>
</tr>
</tbody>
</table>
Thinking then (2003)

Clinical Report

Prevention of Rickets and Vitamin D Deficiency: New Guidelines for Vitamin D Intake

AMERICAN ACADEMY OF PEDIATRICS

Current AAP recommendations
- 400 Int. Units/day
- All breastfed infants as early as the 1st week of life
- Any child with low dietary Vitamin D and low sunlight exposure

And Thinking now (2008)

- In 2010, Institutes of Medicine
 - 600 Int. Units/day for ages 1-18
 - No AAP response yet

Rickets: Calcium deficiency

- Less common in US
- Typically normal levels of 25-OH Vit D
 - Elevated 1,25-OH Vitamin D
- Readily treated with standard calcium supplements (1000mg/day)
Rickets: Vitamin D dependent (Type I)

- 1-alpha-hydroxylase deficiency
 - Chromosome 12q14
 - 1,25-OH Vit D deficiency
 - Normal 25-OH Vit D levels
- Skeletal manifestations early (1st yr)
- Severe hypocalcemia (tetany)
- Rx: Calcitriol (1,25-OH Vit D)

Rickets: Hereditary Vit D Resistant

- Vitamin D dependent rickets Type II
- End organ resistance to vitamin D
 - Mutation in vitamin D receptor
- Autosomal recessive
 - Very rare (<50 families identified)
- Phenotype varies widely
- Rx: high doses of calcitriol
 - Severe cases require long-term Ca infusions

Rickets: Renal Osteodystrophy

- Phosphate accumulation from decreased glomerular filtration
- Decreased vitamin D hydroxylation
 - Hypocalcemia
- Triple trigger for PTH release
 - Often dramatic hyperparathyroidism
Rickets: Hypocalcemia

Rickets: Hypophosphatemic

- Hereditary hypophosphatemic rickets
 - "Vitamin D resistant rickets"
 - Renal phosphate wasting
- X-linked, autosomal dominant, autosomal recessive

Rickets: Hypophosphatemic

- X-linked dominant
 - 1/20,000 births
 - Chromosome Xp22 = PHEX gene
 - Peptidase – degradation of FGF-23
 - FGF-23 inhibits renal absorption of phosphorus
 - Skeletal defects when weight-bearing
 - No gender differences
Rickets: Hypophosphatemic

• X-linked dominant
 – Labs:
 • Normal calcium
 • Normal+ PTH
 • Normal– 1,25-OH Vit D
 – Abnormal!
 – Rx:
 • Oral phosphorus and calcitriol

Rickets: Hypophosphatemic

• Autosomal dominant
 – Activating mutations of FGF-23 gene
 • Inhibits renal absorption of phosphorus
• Autosomal recessive
 – Mutation in DMP-1 gene
 – Increased FGF-23 expression
• Tumor induced Osteomalacia
 – Tumor production of FGF-23

Rickets: Hypophosphatemic

• Hypophosphatemic rickets with hypercalciuria
 – Mutations in Na-Phos transporter
 – Appropriately elevated 1,25-OH Vit D levels
 • Hypercalciuria
 • Increased intestinal Ca absorption
Rickets: Hypophosphatemic