Quantification of Mitral and Tricuspid Regurgitation

Itzhak Kronzon, MD, FASE
Disclosures: Honoraria Philips, Research Grant GE

Special thanks to Roberto M Lang, MD
And Muhamed Saric, MD, PhD
who gave kind permission to use some of their slides

Valvular Insufficiency

1. Pressure Gradient
2. Regurgitant Flow Volume
3. Regurgitant Area

Normal Intracardiac Pressures
3-D Reconstruction of TEE: FLAIL P-2

Note regurgitant area

Flail posterior leaflet

Flail P2
Mitral Regurgitation

Early Indications for Surgery in MR

• **Severe MR**
 - no symptoms
 - No signs of LV dysfunction
 - **Provided that:**
 - Valve is repairable
 - Operative risk is low (< 1%)

Thompson HL et al. Cardiology in Review. Volume 9, Number 3, 2001
ACC-AHA Guidelines: Principles

1. QUALITATIVE
2. QUANTITATIVE
3. SUPPORTIVE

2006 ACC/AHA Guidelines

Regurgitation The 3 Elements

1. Regurgitant Jet
2. Vena contracta
3. PISA
Color Jet Area = 11cm.sq
% of LA area = 63%

Vena Contracta

- What is vena contracta?
 - Narrowest portion of regurgitant flow
 - Occurs at or just distal to regurgitant orifice
 - Diameter of vena contracta is:
 - Independent of driving pressure for fixed orifice size
 - Less sensitive to color Doppler settings compared to jet area

V. contracta Robust to Change in Color Settings

VC = 0.47 cm
VC = 0.46 cm
MR: Vena Contracta

MR Guidelines: Qualitative Criteria

2006 ACC/AHA Guidelines

Quantitation of MR by PISA

Area hemisphere = \(2 \pi r^2\)

Mitral Regurgitation

LV

LA

500 cm/sec

30 cm/sec

50 cm/sec

20 cm/sec

Area hemisphere = \(2 \pi r^2\)
PISA Flow Rate = \[2 \times \pi \times r^2 \times Va \]

Fluid Mechanics Equation

Orifice Area (cm²) = Flow (cm³/sec) / Velocity (cm/sec)

PISA Flow Rate

EQA_{max} = \[2 \times \pi \times r^2 \times Va \]

PISA

MR flow rate

ERO

MR velocity

Courtesy Dr Jae Oh
LV
LA
PISA Radius 1.0 cm
Aliasing V = 40 cm/sec
Flow rate = 2\times3.14\times1\times40 = 251 cc/sec
ERO = \frac{251}{400} = 0.625 \text{ cm}^2/\text{sec}

Simplified PISA

If aliasing velocity is 40 cm/sec, and peak MR jet velocity is 500 cm/sec
(or set aliasing velocity at approx. 1/12 of MR peak velocity)

ERO = \frac{2 \times 3.14 \times R^2 \times 40}{500} = \frac{R^2}{2}

Or even more simple, Just measure the PISA Radius

<table>
<thead>
<tr>
<th>R(mm)</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td><4</td>
<td>1+</td>
</tr>
<tr>
<td>4-6</td>
<td>2+</td>
</tr>
<tr>
<td>7-9</td>
<td>3+</td>
</tr>
</tbody>
</table>

Mitral Regurgitation

Color Doppler baseline scale adjustments

TTE
TEE

Direction of flow
Mitral Regurgitation

Tips and Tricks

PISA calculation of regurgitant volume

\[\text{Flow volume} = \text{Area} \times \text{VTI} \]

\[(\pi \times r^2) \]

\[\text{ERO} \times \text{VTI} = \text{Regurg. Volume} \]
Mitral Regurgitation

Regurgitant Volume (RV)

\[RV_{MV} = \text{Flow}_{MV} - \text{Flow}_{AV} \]

Severe > 60 ml

Regurgitant Fraction (RF)

\[RF_{MV} = \frac{\text{Flow}_{MV} - \text{Flow}_{AV}}{\text{Flow}_{MV}} \times 100 \]

Severe > 50 %

MR Guidelines: Quantitative Criteria

<table>
<thead>
<tr>
<th>Severe</th>
<th>Moderate</th>
<th>Mild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regurgitant orifice area (cm²):</td>
<td>Less than 0.25</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>Regurgitant volume (ml/beat):</td>
<td>Less than 30</td>
<td>31-50</td>
</tr>
<tr>
<td>Regurgitant Fraction (%):</td>
<td>Less than 30</td>
<td>31-49</td>
</tr>
</tbody>
</table>

2006 ACC/AHA Guidelines
Severe MR

Regurgitant orifice (cm²) > 0.4
Regurgitant fraction > 50%
Regurgitant volume (mL) > 60
Vena contracta (cm) > 0.7

The “4,5,6,7” rule.

Mitral Regurgitation
Mitral Valve Inflow

Mitral Inflow:
E wave > 1.2 m/s

Mitral Regurgitation
MR Jet

Intensity of Doppler signal
Doppler tracing of a MR jet

PW-Doppler tracing from the left upper pulmonary vein during TEE

- Severe MR

MR Guidelines: Additional Criteria

<table>
<thead>
<tr>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left atrial size</td>
<td>Enlarged</td>
<td></td>
</tr>
<tr>
<td>Left ventricular size</td>
<td>Enlarged</td>
<td></td>
</tr>
</tbody>
</table>

2006 ACC/AHA Guidelines
TR Severity

- Poor leaflet coaptation
- RV dilatation
- Jet area >10 cm²
- Vena contracta >0.7 cm
- Pisa radius >0.9 cm
- Hepatic vein flow systolic reversal
- Dense, triangular and early peaking

Primary Means of Quantifying TR

<table>
<thead>
<tr>
<th>Method</th>
<th>SEVERE TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Area</td>
<td>> 10 cm²</td>
</tr>
<tr>
<td>Vena Contracta</td>
<td>> 0.7 cm</td>
</tr>
<tr>
<td>PISA Radius</td>
<td>> 0.9 cm</td>
</tr>
</tbody>
</table>

Semiquantitative assessment of TR severity using regurgitant jet area in the right atrium.

Ancillary Methods for Assessing TR

- Right Heart Size
 - Big RA & RV in chronic TR
 - Normal RA & RV in acute TR
- E Wave Velocity
 - Native tricuspid valve $E_{max} > 1.0 \text{ m/s}$
- Hepatic Veins
 - S wave reversal
 - TO-AND-FRO FLOW
 - Also seen in very acute TR resembles systolic flow void and late diastolic flow
Shapes of Spectral TR Jet

- **PARABOLIC SHAPE**
 - Seen e.g. in severe TR or in severe TR when RA pressure is not very high.
 - Early peaking, rapidly decelerating TR jet.
 - Such jets are often turbulent on color Doppler.

- **TRIANGULAR SHAPE**
 - Seen in less than severe TR or in severe TR when RA pressure is not very high.
 - Such jets are often laminar on color Doppler.

Grading TR Severity

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricuspid valve</td>
<td>Usually normal</td>
<td>Normal or abnormal</td>
<td>Abnormal/Patient leaflet/Poor coaptation</td>
</tr>
<tr>
<td>IVRBA/VVC size (cm²)</td>
<td>Normal²</td>
<td>Normal or dilated</td>
<td>Normal or dilated</td>
</tr>
<tr>
<td>Jet area - central jet</td>
<td>< 5</td>
<td>5-10</td>
<td>> 10</td>
</tr>
<tr>
<td>VC width (cm)</td>
<td>Not defined</td>
<td>Not defined, but > 0.7</td>
<td>> 0.7</td>
</tr>
<tr>
<td>PISA ratio</td>
<td>0.5</td>
<td>0.5-0.9</td>
<td>> 0.9</td>
</tr>
<tr>
<td>Jet density and contour</td>
<td>Soft and parabolic</td>
<td>Dense, variable contour</td>
<td>Dense, triangular with early peaking</td>
</tr>
<tr>
<td>Hepatic vein flow</td>
<td>Systolic dominance</td>
<td>Systolic blunting</td>
<td>Systolic reversal</td>
</tr>
</tbody>
</table>

Pulmonic Regurgitation

Pulmonary regurgitation seen on the echocardiogram at the level of the pulmonic valve.
Primary Means of Quantifying TR

<table>
<thead>
<tr>
<th>Method</th>
<th>Validation for PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet Area</td>
<td>Not validated</td>
</tr>
<tr>
<td>Vena Contracta</td>
<td>Not validated</td>
</tr>
<tr>
<td>PISA Radius</td>
<td>Not validated</td>
</tr>
</tbody>
</table>

Significantly, severe pulmonic regurgitation is uncommon.

Severe pulmonic regurgitation may be a long-term complication of congenital heart surgeries (such as tetralogy of Fallot repair).

Significant pulmonic regurgitation can be seen, e.g. in endocarditis or carcinoid disease.

Shapes of Spectral PR Jet

TRAPEZOIDAL SHAPE
- Suggests tricuspid prolapse
- Seen in severer pulmonic regurgitation

TRIANGULAR SHAPE
- Suggests pliable valve leaflets
- Seen in mild to moderate PR

Ancillary Methods for Assessing PR

1. **Right Heart Size**
 - Big RA & RV in severe PR
 - Normal RA & RV in acute PR

2. **Antegrade Velocity**
 - Increased velocity across the PV
 - Antegrade flow across the PV

3. **Flow Reversal in PA**
 - Severe PR → Holodiastolic flow reversal
 - Peak systolic velocity 2.3 m/s (Normal ~ 1.0 m/s)
Other Doppler Signs of Severe PR

Majority of PR occurs in early diastole.

TTE - COLOR DOPPLER
Note the laminar (non-turbulent) flow of severe PR.