Distinguishing between Diabetes Mellitus Type 1 and Type 2, (with Overview of Treatment Strategies)

Leann Olansky, MD, FACP, FACE
Cleveland Clinic
Endocrinology
Glucose Tolerance Categories

Adapted from The Expert Committee on the Diagnosis and Classification of DM. *Diabetes Care*. 1997;20:1183-1197.

FPG
- Diabetes Mellitus: 126 mg/dL
- Impaired Fasting Glucose: 100 mg/dL
- Normal: 7.0 mmol/L
- Prediabetes: 6.1 mmol/L

2-Hour PG on OGTT
- Diabetes Mellitus: 200 mg/dL
- Impaired Glucose Tolerance: 11.1 mmol/L
- Normal: 7.8 mmol/L

Categories of Increased Risk for Diabetes (Prediabetes)

- FPG 100 mg/dl (5.6 mmol/l) to 125 mg/dl (6.9 mmol/l) [IFG]
- 2-h PG in the 75-g OGTT 140 mg/dl (7.8 mmol/l) to 199 mg/dl (11.0 mmol/l) [IGT]
- A1C 5.7-6.4%

Diabetes Care 2010;33:S62-S69
Classification of Diabetes

- Type 1 DM
 - Due to Beta Cell destruction whether immune or non-immune.
 - Requires Insulin as replacement Therapy

- Type 2 DM
 - Primarily due to resistance to the action of Insulin.
 - Therapy should be directed toward reducing insulin requirements.
 - Has secondary Beta cell loss that may require stimulation of insulin release or Insulin therapy late in the disease process
Classification of Diabetes

• Based on epidemiologic grounds
• Based on ethic background
• Associated conditions
• Laboratory

At Diagnosis Type 2 Diabetes

• More common in Latinos, African Americans and Native Americans
• Older
• Heavier (Centrally Obese = Increased Waist to Hip)
• Family history of diabetes
• More likely to have
 – Hypertension
 – Hypertriglyceridemia
 – Low HDL
• More cardiovascular disease
Multiple Risk Factors: Implications for CHD Risk

- Hypertension
 - SBP 150 mm Hg
 - x1.5
- Dyslipidemia
 - TC 260 mg/dL
 - x2.3
- Glucose Intolerance
 - x1.8

At Diagnosis Type 1 Diabetes

- More commonly Caucasian
- Tend to be younger
- More likely normal weight or to present with significant weight loss
- Unlikely to have family members with diabetes
- Likely to have other auto-immune endocrine problems such as hypo or hyperthyroidism
Caveats

- Childhood obesity has lead to increase in Type 2 DM in children and young adults.
- LADA (Latent Autoimmune Diabetes in Adults)
- African Americans, Latinos and even Native Americans most often are admixed with Caucasian
- African Americans often have hypertension
- Latinos often have normal BP at diagnosis

Diabetes Types and Stages

<table>
<thead>
<tr>
<th>Types</th>
<th>Stages</th>
<th>Normoglycemia</th>
<th>Hyperglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Normal glucose regulation</td>
<td>Impaired Glucose Tolerance or Impaired Fasting Glucose (Pre-Diabetes)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not insulin requiring</td>
</tr>
<tr>
<td>Type 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Specific</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Types</td>
<td>Gestational Diabetes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diabetes Care 2010;33:962-969
Laboratory

- C-Peptide
- Islet antibodies
 - Most likely positive GAD

Natural History of Type 2 Diabetes

R. Bergenstal and D. Kendall, International Diabetes Center
Natural History of Type 1 Diabetes

What Do the Diabetes Share?

- Hyperglycemia
- Hyperglycemia related complications
 - Retinopathy
 - Nephropathy
 - Neuropathy
Cumulative Incidence of a Sustained Change in Retinopathy in Patients with IDDM Receiving Intensive or Conventional Therapy

The Diabetes Control and Complications Trial Research Group.

Implications for Therapy

- Type 1 Diabetes will need insulin for survival
- Multi Dose Insulin (MDI) is preferred
 OR
- Insulin pump
Example of Connaught insulin produced in Toronto, 1923

Human Insulin

A-chain 21 amino acids
B-chain 30 amino acids

Monomers Dimers Self-aggregation in solution Hexamers
Action Profiles of Insulins

Aspart, glulisine, lispro 4–5 hours
- Regular 6–8 hours
- NPH 12–16 hours
- Ultralente 18–20 hours
- Glargine ~24 hours

Insulin Injection Devices

Insulin pens
- Faster and easier than syringes
 - Improve patient attitude and adherence
 - Have accurate dosing mechanisms, but inadequate resuspension of NPH may be a problem

Insulin Pumps

Continuous Subcutaneous Insulin Infusion (CSII)

- For motivated patients
- Expensive
- External, programmable pump connected to an indwelling subcutaneous catheter
 - Only rapid-acting insulin
 - Programmable basal rates
 - Bolus dose without extra injection
 - New pumps with dose calculator function
 - Bolus history
- Requires support system of qualified providers
Pramlitide

- Injected before meals to:
 - Slow gastric emptying
 - Suppress glucagon
 - Decrease appetite (limit weight gain)

Type 2 Medications

- Metformin uniformly recommended as initial therapy for type 2 diabetes unless contraindicated
 - Renal insufficiency
 - Severe liver disease
 - Significant alcohol intake
- GI intolerance
Benefits of Metformin

- Inexpensive
- Reduces insulin resistance at the liver level
- Weight neutral or some weight loss
- Improvement in lipids
- CV benefits
- Reduced cancer incidence
- Decrease in dementia

Other Insulin Sensitizers

- Thiazoladinedione (TZD)
 - Pioglitazone
 - Rosiglitazone

Improve insulin resistance at the muscle, adipose tissue and liver

Lipid benefit (HDL↑ TG↓ ApoB ↓)
CV benefit
TZD Benefits

- Improved Insulin Resistance
- Reduced Cancers (other than bladder)
- Increase in HDL cholesterol
- Reduce Triglycerides
- Reduced ApoB (reduced LDL particle number)

[Pioglitazone only]

- Reduced MI or Stroke (especially 2nd event)
- Decrease peripheral resistance

TZD Baggage

- Weight gain
- Edema
- Fractures (Women)
- ? Bladder cancer?
Other Type 2 Agents

• GLP-1 agonists
• DPP-4 inhibitors
• SGLT-2 inhibitors
• Colesevelam
• QR bromocriptine
• Alpha Glycosidase inhibitors

QR Bromocriptine

• Improves insulin resistance by actions on CNS
• May have some weight loss
• Reduced CV events by 50% in clinical trials

• May cause nausea
• Not to be used in shift workers or rotating schedules
GLP-1 Agonist

- Improve insulin production by Beta-cells
- Induce Weight loss
- Reduction in BP
- Improvement in lipids

DPP-4 Inhibitors

- Extend the action of endogenous GLP-1 and GIP
- Oral medications
- Weight neutral
- No risk of increased CV events
- Question of increase in CHF
SGLT-2 Inhibitors

- Cause modest weight loss (about 5 lb)
- Lower BP
- Diuretic effect

Colesevelam

- Bile sequestering resin
- Lower LDL cholesterol as well
- Can be constipating
Alpha Glycosidase Inhibitors

- Weight neutral of mild weight loss
- Safe – action within the lumen of the intestine
- CV safety
- GI side effects
- Modest effect on glucose lowering

Combinations That Make Sense (Metformin with Almost Anything)

- Metformin/ Pioglitazone
 - Weight neutral or almost
 - Less edema
 - Complimentary lipid effects
 - Reduced Cancer and CV risk

- Metformin with colesvelam balancing GI side-effects
Other Combinations

• Pioglitazone/ SGLT-2 inhibitor
 – Diuretic effect of SGLT-2 balancing Na+ retention of TZD

• DPP-4 inhibitor/ SGLT-2 inhibitor
 – Diuretic effect of SGLT-2 reducing risk for CHF of DPP-4 inhibitor

Pathophysiological Contributions to Hyperglycemia in Type 2 Diabetes:

1. Pancreatic insulin secretion
2. Pancreatic glucagon secretion

5. Gut carbohydrate absorption
8. Kidney- Increased glucose reabsorption
4. Liver

6. Fat- Increased lipolysis, inc FFA

3. Muscle

7. Brain- Inc. Appetite Insulin Resistance, Decrease , GLP-1

HYPERGLYCEMIA

Peripheral glucose uptake
Summary

• Type 1 Diabetic patients require insulin and our task is to provide it in as physiologic manor as possible matching insulin to intake

• Type 2 Diabetic patients have many options which should include 1 or more agents that reduce insulin resistance if possible even if they have reached a state where they require insulin as part of their therapy.

References

• http://www.drugs.com/condition/diabetes-mellitus-type-ii.html